
1.
2.
3.

a.
4.

5.

Solution - S3 Direct Upload

Architecture

Steps

Alice wants to upload a file
Nuxeo Server returns Temporary Credentials along with S3 Bucket information (Base Key, Bucket Name) to do the upload
Alice uploads file directly to S3

Alice communicates to Nuxeo Server that the upload is completed in Bucket X with Key Y, File Size Z, Mimetype W
Nuxeo Server performs a consistency check on the upload (File Size, Bucket, Key, Mimetype) and renames the file name to match the
ETag (Re-use S3BinaryManager)
On Blob.AttachOnDocument, Nuxeo Server copies the file over to the Persistent Store

Discovered Limitations

The Batch Upload mechanism doesn't support uploading to other sources than the Local File System.

Implementation

We applied the , so we added a new layer called Batch Upload Handler, which will allow toFundamental Theorem of Software Engineering
customise upload handling via a contribution on BatchManager, called . To preserve the previous behaviour weBatchUploadHandler
encapsulated the former algorithm in a so that we still achieve backwards-compatibility.DefaultBatchHandler

We also added several endpoints to the endpoint to support this new /upload "layer"

New Endpoints

Method Endpoint Parameters Description

GET /upload/handlers Lists all the registered Upload Handlers

POST /upload/new/{provider} Provider - The unique identifier of the handler to
use for this batch upload

Created a new Batch bound to a certain Upload
Handler

POST /upload/{batchId}/{fileIndex}/complete BatchId - The Id of the Batch

File Index - Index of the file within the Batch

Notifies Upload Handler that an upload is
completed. After that, the file consistency is
double-checked by the handler and renamed to it's
ETag so that we can re-use S3BinaryManager

https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

GET /upload/{batchId}/info BatchId - The id of the Batch This endpoint will now return a JSON Object along
with custom Extra Information to be filled by the
Handler.

In S3 Handler case, it will return STS Credentials
and Bucket Information on the fieldextraInfo

The /complete Endpoint will do a kind of a "hack", but it isn't a hack. It will simply check the existence of the file, and rename it to it's ETag so we
can re-use the S3BinaryManager to fetch the Blobs from S3.

We needed to do a "little hack" where if the file was uploaded via MultipartUpload, the resulting ETag is an MD5 of each Part MD5 with a dash
character `-` and the number of parts in the upload. After renaming (CopyObject) it will assume a different ETag if CopyMultiPartObject wasn't
used.

	Solution - S3 Direct Upload

