
Nuxeo SQL Storage
Specifcation

Last Modifcation 2008-08-29

Project Code NUXEO

Document ID NXSQL

Version 1.1

Copyright Copyright © 2008 Nuxeo. All Rights Reserved.

Nuxeo SQL Storage I Specifcation

History

Version Date Participant(s) Comments

0.5 2008-03-25 • Florent Guillaume First released version

0.6 2008-05-02 • Florent Guillaume Improved storage

0.9 2008-05-05 • Florent Guillaume Reformatting

1.0 2008-05-28 • Florent Guillaume Expanded fle storage section

1.1 2008-08-29 • Florent Guillaume Describe current implementation

v1.1 I Copyright © 2008 Nuxeo. All Rights Reserved. I Page 2/15

Nuxeo SQL Storage I Specifcation

Table of Contents
1 Introduction ... 4

2 Mapping Nuxeo to nodes and properties ..5

2.1 Nodes, properties, children ...5
2.2 Children ... 5
2.3 Fragment tables .. 5
2.4 Fields mapping ..5
2.5 Security .. 6

3 Fragment SQL mapping ...7

3.1 Identifers .. 7
3.2 Repositories table ...7
3.3 Hierarchy table .. 7
3.4 Type information .. 7
3.5 Simple fragment tables .. 8
3.6 Collection fragment tables ..8
3.7 Specialized tables ...8

3.7.1 Files and binaries .. 8
3.7.2 Locking ...9
3.7.3 Versioning ... 9
3.7.4 Proxies ..10
3.7.5 Security ..11
3.7.6 Miscellaneous ..11

4 Future features ..12

4.1 Per-document facets ...12
4.2 Optimized hierarchy ... 12
4.3 Same-name siblings ..12
4.4 Shareable nodes ...12
4.5 Workspaces .. 13
4.6 Residual properties ... 13
4.7 Local groups .. 13
4.8 Version predecessors and successors ... 13
4.9 Versioned containers .. 14
4.10 Version activities .. 14
4.11 Version confgurations and baselines ...15

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 3/15

Nuxeo SQL Storage I Specifcation

1 Introduction
This document presents the design and implementation (as of 2008-08-29) of a storage

model for Nuxeo EP to persist information in an SQL database.

The goals of this storage model are:

• store information in standard SQL databases,

• use “natural” object mapping to tables,

• be fast,

And in the future:

• support a full versioning API, including tree versioning,

• support full-text searches on databases having that capability,

• support storage of blobs as database objects or as flesystem fles,

• have some fexibility in the storage model to optimize certain cases at confguration
time.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 4/15

Nuxeo SQL Storage I Specifcation

2 Mapping Nuxeo to nodes and properties
The Nuxeo model is mapped internally to a model based on a hierarchy of nodes and

properties. This model is similar to the basic JCR (JSR-170) data model.

2.1 Nodes, properties, children
A node represents a complex value having several properties.

The properties of a node can be either simple (scalars, including binaries), or collections of
scalars (lists usually).

A node can also have children. A complex property of a Nuxeo document is mapped to
child nodes.

2.2 Children
The parent-child information for nodes is stored in a so-called “hierarchy” table.

The normal children of a document are mapped to child nodes of the document node.

There are therefore two kinds of children: child documents and complex types. They have
to be quickly distinguished in order to:

• fnd all child documents and only them,

• fnd all complex properties of a document and only them,

• resolve name collisions.

To distinguish the two, the fragment table holding hierarchy information has an additional
column holding a “is complex property” fag.

2.3 Fragment tables
A fragment table is a table holding information corresponding to one schema (simple

fragment), or a table corresponding to a multi-valued property of a schema (collection
fragment).

For a simple fragment, each of the table's columns correspond to a simple property of the
represented schema. One row corresponds to one document using that schema.

For a collection fragment, the set of values for the multi-valued property is represented
using as many rows as needed.

A node is the set of fragments corresponding to the schemas of that node.

2.4 Fields mapping
Nuxeo felds are mapped to properties or to child nodes:

• a simple type (scalar or array of scalars) is mapped to a property (simple or collection)
of the document node,

• a complex type is mapped to a child node of the document node. There are two
kinds of complex types to consider:

• lists are mapped to a set of ordered complex property children,

• maps are mapped to a node whose node type corresponds to the schema of the
map.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 5/15

Nuxeo SQL Storage I Specifcation

2.5 Security
Security information is stored as an ACL which is a collection of simple ACEs holding basic

rights information. This collection is stored in a dedicated table in a similar way to lists of
scalars, except that the value is split over several column to represent the rich ACE values.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 6/15

Nuxeo SQL Storage I Specifcation

3 Fragment SQL mapping

3.1 Identifers
Each node has a unique identifer. In standard Nuxeo EP, it is a UUID that is randomly

generated by the storage backend. The backend also supports using an integer assigned
from an auto-incremented database sequence, but this is not used by Nuxeo at the moment.

All the fragments making up a given node use the node identifer in their id column.

For clarity in the rest of this document simple integers are used, but Nuxeo actually uses
UUIDs by default.

3.2 Repositories table
This table hold the root identifer for each repository. Usually Nuxeo has only one

repository per database, which is named “default”.

Table repositories:

id name

1 default

3.3 Hierarchy table
There are two kinds of nodes: placeful ones (those who have a location in the containment

hierarchy), and placeless ones (version frozen nodes).

Each node has a row in the main hierarchy table defning its containment information
if it is placeful, or just holding its name if it is placeless. The same tables holds ordering
information for ordered children.

Table hierarchy:

id parentid pos name ...

1 “”

1234 1 0 workspace

5678 1234 0 mydoc

Note that:

• the id column is used as a foreign key reference with “on delete cascade” from all
other fragment tables that refer to it,

• the pos is NULL for non-ordered children,

• the parentid and pos are NULL for placeless nodes,

• the name is an empty string for the hierarchy's root.

For performance reasons (denormalization) this table has actually more columns; they are
detailed below.

3.4 Type information
The node types are accessed from the main hierarchy table.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 7/15

Nuxeo SQL Storage I Specifcation

When retrieving a node by its i d, the primary type is consulted frst and, according to the
value found, applicable fragments are deduced, to give a full information of all the fragment
tables that apply to this node.

Table hierarchy (continued):

id ... isproperty primarytype ...

1 FALSE Root

1234 FALSE Bar

5678 FALSE Mytype

T h e isproperty column holds a boolean that distinguishes normal children from
complex properties.

3.5 Simple fragment tables
Each Nuxeo schema corresponds to one table. The table's columns are all the single-

valued properties of the corresponding schema. Multi-valued properties are stored in a
separate table each.

A myschema fragment (corresponding to a Nuxeo schema with the same name) will have
the following table:

Table myschema:

id title description created

5678 Mickey The Mouse 2008-08-01 12:56:15.000

A consequence is that to retrieve the content of a node, a SELECT will have to be done in
each of the tables corresponding to the node type and all its inherited node types. However
lazy retrieval of a node's content means that in many cases only a subset of these tables will
be needed.

3.6 Collection fragment tables
A multi-valued property is represented as data from a separate array table holding the

values and their order. For instance, the property “my:subjects” of the schema

“myschema” with prefx “my” will be stored in the following table:

Table my_subjects:

id pos value

5678 0 USA

5678 1 CTU

3.7 Specialized tables
The following tables correspond to features that are not expressed primarily as Nuxeo

schemas.

3.7.1 Files and binaries
The fle (content) abstraction in Nuxeo is treated by the storage as any other schema,

except that one of the column hold a “binary” value. This binary value corresponds indirectly
to the content of the fle.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 8/15

Nuxeo SQL Storage I Specifcation

Table content:

id mime-type encoding data length digest

8501 application/pdf ebca0d868ef3 344256

8502 text/plain ISO-8859-1 5f3b55a834a0 541

8503 text/plain ISO-8859-1 5f3b55a834a0 541

Table file:

id filename

4061 report.pdf

4062 test.txt

4063 test_copy.txt

The flename is stored in a separate table just because the current Nuxeo schemas are split
that way (the flename is a property of the document, but the content is a child complex
property). In the future this could be optimized by having better schemas.

The data column of the content table refers to a binary type. All binary storage is done
on the server flesystem according to the value stored in the data column, which is a
cryptographic hash of the binary, in order to check for uniqueness and share identical
binaries.

On the server flesystem, a binary is stored in a set of multi-level directories based on the

has, to spread storage. For instance the binary with the has ebca0d868ef3 will be stored in

a fle with path data/eb/ca/0d/ebca0d868ef3 under the binaries root.

3.7.2 Locking
The locking in the basic Nuxeo model is simple, and mostly managed by the application

level.

A lock can be shallow (applies only to the node on which it's placed) or deep (applies to all
underlying nodes)

Table locks:

id lock

5670 Administrator:20 Aug 2008

5678 Administrator:20 Aug 2008

9944 Administrator:21 Aug 2008

In the future this table will be extended with a timestamp (for timeouts), a token (for
open-scoped locks), and further information (like a deep/shallow fag).

3.7.3 Versioning
Versioning uses identifers for several concepts:

• live node id,

• version id,

• versionable id.

The live node id is the identifer of a node that may be subject to versioning.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 9/15

Nuxeo SQL Storage I Specifcation

The version id is the identifer of the frozen node copy that is created when a version was
snapshotted.

The versionable id is the identifer of the original live node of a version, but keeps its
meaning even after the live node may be deleted. Several frozen version nodes may come
from the same live node, and therefore have the same versionable id.

Version nodes don't have a parent (they are placeless), but have more meta-information

(versionableid, various information) than live nodes. Live nodes hold information about
the version they are derived from (base version).

Table hierarchy (continued):

id ... baseversionid ischeckedin majorversion minorversion

5675 6120 TRUE 1 0

5678 6143 FALSE 1 1

5710 FALSE

6120 1 0

6121 1 1

6143 4 3

Note that:

• the baseversionid represents the version from which a checked out or checked
in document originates. A new document that has never been checked in has a NULL
baseversionid,

• a version node has a NULL ischeckedin value,

• this information is inlined in the hierarchy table for performance reasons.

Table versions:

id versionableid created label description

6120 5675 2007-02-27 12:30:00.000 v1

6121 5675 2007-02-28 03:45:05.000 v2

6143 5678 2008-01-15 08:13:47.000 v1

Note that:

• t h e versionableid is the id of the versionable node (which may not exist
anymore, which means it's not a foreign key reference), and is common to a set of
versions for the same node.

3.7.4 Proxies
Proxies are a Nuxeo feature, expressed as a node type holding only a reference to a frozen

node and a convenience reference to the versionable node of that frozen node.

Proxies by themselves don't have additional content-related schema, but still have
security, locking, etc. These facts are part of the node type inheritance, but the proxy node
type table by itself is a normal node type table.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 10/15

Nuxeo SQL Storage I Specifcation

Table proxies:

id targetid versionableid

9944 6120 5675

The targetid is the id of a version node.

The versionableid is duplicated here for performance reasons, it could be retrieved
from the target using a JOIN.

3.7.5 Security
The Nuxeo security model is based on the following:

• a single ACP is placed on a (document) node,

• the ACP contains an ordered list of named ACLs, each ACL being an ordered list of
individual grants or denies of permissions,

• the security information on a node (materialized by the ACP) also contains local
group information (which can emulate owners).

Table acls:

id pos name grant permission user group

5678 0 workfow true WriteProperties cobrian

5678 1 workfow false ReadProperties Reviewer

5678 2 user false ReadProperties kbauer

This table is slightly denormalized (names with identical values follow each other by pos
ordering), but this is to minimize the number of JOIN to get all ACLs for a document. Also one
cannot have a named ACL with an empty list of ACEs in it, but this is not a problem given the
semantics of ACLs.

The user column is separated from the group column because they semantically belong
to diferent namespaces. However for now in Nuxeo groups and users are all mixed in the

user column, and the group column is kept empty.

3.7.6 Miscellaneous
The lifecycle information (lifecycle policy and lifecycle state) is stored in a dedicated table.

The dirty information (a fag that describes whether the document has been changed
since its last versioning) is stored in the same table for convenience.

Table misc:

id lifecyclepolicy lifecyclestate dirty

5670 default draft FALSE

5678 default current FALSE

9944 publishing pending FALSE

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 11/15

Nuxeo SQL Storage I Specifcation

4 Future features
JCR and JCR 2 have a number of features that have to be taken into account in the design

of the storage model, but are not necessary for the basic Nuxeo mapping.

4.1 Per-document facets
Nuxeo will in the future allow the addition of per-document facets, this will be managed

through per-node instance mixins. They will be stored in an additional mixintypes table.

Table mixintypes:

id mixintype

5678 withcomments

5678 withannotation

4.2 Optimized hierarchy
To improve hierarchical searches, for instance fnd all documents under a given parent, a

separate table storing the total hierarchy will be used. This table can be maintained by the
application or by stored procedures triggers.

Table ancestors:

id ancestorid depth

1234 1 1

5678 1234 1

5678 1 2

Note that the number of lines of this table is equal to the number of placeful documents
multiplied by the average document depth.

The depth column stores the depth of a node relative to its ancestor. Only strict ancestors

are stored, a node is not its own ancestor (and therefore depth is always at least 1).

The ancestors table gives a fast way to:

• check whether a node is under another node,

• get the set of all nodes under a given node,

• get inherited information about all nodes above a given node.

4.3 Same-name siblings
JCR allows an implementation to have same-name siblings. This is already allowed with

the current design as the name of the children of a node is not a unique key for that node.

4.4 Shareable nodes
JCR 2 allows an implementation to have shareable nodes. This can be implemented at the

storage level by relaxing the constraint that the i d be the primary key in the hierachy
table, and allowing it to appear several times with a diferent parentid, and all the non-

hierarchy information of the hierarchy table (type, versioning, etc) into a separate nodes
table.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 12/15

Nuxeo SQL Storage I Specifcation

4.5 Workspaces
JCR allows several workspaces, between which some clone and merge operations are

possible. Two documents with the same id can appear in diferent workspaces, but all
workspaces share the same version histories.

This is already taken into account by the current design, the workspace name is the

repository name in the repositories table.

4.6 Residual properties
JCR allows node types to defne residual properties, which are properties with arbitrary

names. As this name is not defned in the property defnition of the node type, it has to be
specifed in a dedicated column.

This model is also known as the entity-attribute-value model (EAV).

Each scalar and array type has its own table to hold residual properties.

Table residual_strings:

id name value

5678 somevalue foo

For residual properties that are multi-valued, a variant on collection table is used:

Table residual_stringarrays:

id name pos value

5678 somearray 0 foo

5678 somearray 1 bar

When a node is retrieved, the residual properties tables are checked only if the node type

allows residual properties. An additional column in the main hierarchy table could hold a
fag specifying if there are actually residuals stored, or even a bitmask with the specifc
residual types present.

4.7 Local groups
A table will hold local group information. The exact semantics of the local groups have to

be determined.

Table localgroups:

id localgroup user

5678 Reviewer cobrian

5678 Reviewer tlennox

5678 Owner jbauer

If groups of groups are needed, an additional group column can be used.

4.8 Version predecessors and successors
The JCR predecessors and successors are stored in a dedicated table. They describe a

graph. In JCR 2 simple versioning, this table is implicit in the ordering of the versions by
creation date.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 13/15

Nuxeo SQL Storage I Specifcation

Table versiongraph:

versionableid id successorid

5675 6120 6121

5675 6120 6123

5675 6143 6144

Note that:

• the tuple (versionableId, id) is unique (versionableId is a denormalized

column, it can be deduced from the id),

• the tuple (id, successorId) is unique.

4.9 Versioned containers
JCR also records (with full versioning in JCR 2), when a node with versionable children is

versioned, to what version history id each child was referring.

Table versionchildren:

parentid id pos name

6120 5640 0 foo

6120 5641 1 bar

Notes:

• the id column refers to versionable node ids,

• the parentId column refers to version nodes,

• the tuple (parentId, id) is unique,

• the tuple (parentId, pos) is unique (excluding NULL pos values for),

• for versioned child nodes of unordered containers the pos will be NULL.

4.10 Version activities
JCR 2 specifes additional versioning features: activities and baselines.

An activity records a group of changes. The user can start and stop activities, and while an
activity is in efect all versioning changes are associated to it. A version records which activity
created it, and a checked out document records which activity checked it out. A checked in
document does not have an activity.

Table hierarchy (continued):

id ... activityid

5670 8010

5671 8010

5675

5678 8011

A title can also be associated with an activity.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 14/15

Nuxeo SQL Storage I Specifcation

Table activitytitles:

activityid title

8010 testing

8011 v2.1

4.11 Version confgurations and baselines
A confguration is a subtree of documents rooted at a particular node, but that does not

include any other confguration that may exist inside this tree. The confguration's state can
be thought of as a special kind of history that doesn't store document versions but baselines.

A document is designated as the root of a confguration by using an additional
configurationid column.

Table hierarchy (continued):

id ... configurationid

5678 408

The confguration itself records its root, and will be associated with a baseline when the
confguration is checked in. The baselines are special version objects that record the full state

of a confguration. The state of a confguration consists of all the baseversionid of the
nodes belonging to that confguration. A confguration can be restored from any baseline
with the same root, which has the efect of restoring all the nodes to their recorded
baseversionid.

Table configurations:

configurationid rootid baselineid

408 5678 950

Table baselines:

baselineid created label

950 2008-07-15 12:35:03.000 foo

Table baselinestates:

baselineid id baseversionid

950 5678 5671

950 5679 5711

950 5670 5712

The above storage is one of the simplest possible, but a more efcient storage of baseline
states would involve intelligent storage of deltas between trees, otherwise the storage size is
proportional to the tree size and not to the changes between confgurations.

v1.1 I Copyright © Nuxeo 2008. All Rights Reserved. I Page 15/15

	1 Introduction
	2 Mapping Nuxeo to nodes and properties
	2.1 Nodes, properties, children
	2.2 Children
	2.3 Fragment tables
	2.4 Fields mapping
	2.5 Security

	3 Fragment SQL mapping
	3.1 Identifiers
	3.2 Repositories table
	3.3 Hierarchy table
	3.4 Type information
	3.5 Simple fragment tables
	3.6 Collection fragment tables
	3.7 Specialized tables
	3.7.1 Files and binaries
	3.7.2 Locking
	3.7.3 Versioning
	3.7.4 Proxies
	3.7.5 Security
	3.7.6 Miscellaneous

	4 Future features
	4.1 Per-document facets
	4.2 Optimized hierarchy
	4.3 Same-name siblings
	4.4 Shareable nodes
	4.5 Workspaces
	4.6 Residual properties
	4.7 Local groups
	4.8 Version predecessors and successors
	4.9 Versioned containers
	4.10 Version activities
	4.11 Version configurations and baselines

