
Documentation of Removing script-src data Directive from
Content Security
Introduction
The purpose of this document is to record the process and methods used to remove the data: directive from the
Content Security Policy (CSP) of our organization. The data: directive allows data URLs to be used in content, which
can pose security risks. This documentation will cover various approaches attempted to achieve this goal, along with their
outcomes.

Overview of CSP and data: Directive
Content Security Policy (CSP) is a security feature that helps prevent various attacks, including Cross-Site Scripting
(XSS) and data injection attacks. The data: directive in CSP allows the use of data URLs. For enhanced security,
removing this directive can reduce the attack surface.

Default CSP

Updating CSP Headers without` script-src data:

Steps

Current Default CSP Our application works fine as expected with script-src data: *

img-src data: blob: *;

default-src blob: *;

script-src data: * 'nonce-dummy' 'unsafe-eval';

style-src 'unsafe-inline' *;

font-src data: *"

The first approach involves directly modifying the CSP headers to remove the data: directive and observing the
immediate impact.

1. Access the server configuration where CSP headers are defined.

2. Remove the data: directive from the CSP header.

img-src data: blob: *;

default-src blob: *;

script-src self 'nonce-dummy' 'unsafe-eval';

style-src 'unsafe-inline' *;

font-src data: *"

4. Deploy the changes in a testing environment.

5. Monitor the blocked resources and functionality issues.

https://github.com/nuxeo/nuxeo-cloud-qa/blob/release-2021.0.9/nuxeo-cloud-qa-package/src/main/resources/install/templates/nuxeo-cloud-qa-package/config/csp-config.xml#L6

Outcome

here are the list of files, shown in the above picture.

Note:

Approach 1: nonce-based
In this approach, we enhance the security of our web UI by implementing nonce-based Content Security Policy (CSP).
We achieve this by adding a nonce attribute to all script tags within our web UI including above 5 files.

PR: https://github.com/nuxeo/nuxeo-web-ui/pull/2245 Ref: https://content-security-policy.com/nonce/

example:

Outcome:

Application breaks and show blank page.

Shows below errors in html-imports.min.js .

Refused to load the script 'http://<domain>/nuxeo/ui/vendor/webcomponentsjs/webcomponents-

loader.js' because it violates the following Content Security Policy directive: "script-src

'nonce-dummy' 'unsafe-eval'". Note that 'script-src-elem' was not explicitly set, so 'script-src'

is used as a fallback.

1. nuxeo/ui/vendor/webcomponentsjs/webcomponents-loader.js

2. nuxeo/ui/vendor/html-imports/html-imports.min.js

3. nuxeo/ui/vendor/web-animations/web-animations-next-lite.min.js

4. nuxeo/ui/config.jsp

5. nuxeo/ui/main.bundle.js

nuxeo-web-ui >= 2021 version is using Polymer 3

Polymer 3 versions no longer include the HTML imports polyfill, and have been developed to work with ES6
modules.

But still in webpack polyfill we are using html-imports.min.js

<script nonce="dummy">....</script>

https://github.com/nuxeo/nuxeo-web-ui/pull/2245
https://content-security-policy.com/nonce/
https://github.com/webcomponents/html-imports
https://github.com/nuxeo/nuxeo-web-ui/blob/maintenance-3.1.x/package.json#L116-L178
https://polymer-library.polymer-project.org/3.0/docs/polyfills
app://obsidian.md/%5B%60html-imports.min.js%60%5D(https://github.com/webcomponents/html-imports)
https://github.com/nuxeo/nuxeo-web-ui/blob/maintenance-3.1.x/webpack.config.js#L34

here are the list of new files, shown in the above picture.

Approach 2: 'strict-dynamic'
Using the 'strict-dynamic' keyword in the Content Security Policy (CSP) is a powerful approach to mitigate the risk of
XSS (Cross-Site Scripting) attacks while allowing for dynamic script execution from trusted sources.

Trusted sources

Outcome:

Final Analysis:
By Combining both Approach 1 & 2 we can remove data directive from our default csp and also unsafe-eval

1. nuxeo-home

2. nuxeo-default-search-form

3. nuxeo-browser

4. nuxeo-trash-search-form

5. nuxeo-assets-search-form

6. nuxeo-expired-search-form

Ensure that all dynamically generated script tags (e.g., created via document.createElement('script') or
eval()) are injected only from trusted sources.

These trusted sources should be explicitly whitelisted in the CSP header or be included in the 'self' directive if
they originate from the same origin.

img-src data: blob: *;

default-src blob: *;

script-src 'nonce-dummy' 'unsafe-eval' 'strict-dynamic';

style-src 'unsafe-inline' *;

font-src data: *

Same as approach 1

img-src data: blob: *;

default-src blob: *;

script-src 'nonce-dummy' 'strict-dynamic';

style-src 'unsafe-inline' *;

font-src data: *

