
5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 1/9

View original

Deal with CORS error in

Chromium

Dealing with the CORS error when
loading images in Chromium, Chrome
or Edge.

By Kamen Kotsev

5 min. read

Have you ever had to load images in JavaScript

using the CORS Header

crossOrigin="Anonymous"?

In a recent project of ours, we've encountered

an issue when fetching images with CORS

headers in JavaScript. The error messages

stated:

Access to image at '${url}' from origin '${origin}' has
been blocked by CORS policy: No 'Access-Control-
Allow-Origin' header is present on the requested
resource.

Reproducing the error

TL;DR:

If you open a Google

Chrome/Chromium/Microsoft Edge browser.

Start the console in a random website (for

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 2/9

example this one) and run this code in it - you

should be able to see the error in the network

tab.

const url = "https://chrome-cors-testing.s3.eu-

central-1.amazonaws.com/hacksoft.svg";

const image = new Image();

image.src = url;

const corsImage = new Image();

corsImage.crossOrigin = "Anonymous";

corsImage.src = url;

You can see in the network tab, that the first

image, called without setting crossOrigin,

loaded correctly, and the second image, called

with crossOrigin="Anonymous" has an error.

Long version:

The steps to reproduce the issue are the

following:

Open a browser running on the Chromium
core. The most widely used of those are
Chromium, Google Chrome and Microsoft
Edge. I'm going to use Google Chrome to
demonstrate it.
Open a random website. For example - this
one.
Open the console in your browser devtools.
Chose an image url from a different host that
has CORS specifications. It's important to be
from a different host, and to not return the

https://hacksoft.io/
https://hacksoft.io/

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 3/9

Access-Control-Allow-Origin: *

header, so we can trigger the CORS check.
This happens for almost all of the s3-hosted
images. The example that I have is this url:
https://chrome-cors-testing.s3.eu-central-
1.amazonaws.com/hacksoft.svg
Load the image using JavaScript:

const url = "https://chrome-cors-testing.s3.eu-

central-1.amazonaws.com/hacksoft.svg";

const image = new Image();

image.src = url;

Load the image again, but this time add a
Access-Control-Allow-Origin: *

header. Do this by adding the image
property .crossOrigin = "Anonymous"

const corsImage = new Image();

corsImage.crossOrigin = "Anonymous";

corsImage.src = url;

The result should look something like this:

Note that the second time we try to load the

image - Chrome returns a CORS error instead

of a response object.

The reason

So why does Google Chrome throw an error

when the url is accessed with a CORS header?

Well, first, you should know why do websites use

the CORS policy. There is a very good article

explaining this.

https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 4/9

Let's explore how does the browser fetch

images and resources.

It sends a GET request for the image with

certain headers. It then downloads the image

and then caches it for further use.

Before loading any image, it checks the cache

first, to see if it already downloaded it at some

point. If it finds the image there - the browser

doesn't send a GET request for the image, but

rather just takes it from the cache and serves it

back to you. This saves load time and network

data when you often visit the same website.

The issue that we have here, is related to

Chromium's way of caching images, and it

doesn't appear to happen in browsers based on

different engines:

Chrome:

Firefox:

Safari:

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 5/9

Edge:

Note that Microsoft Edge also has this issue, because
it's based on the Chromium engine.

The issue comes from the way that Chromium

caches the images. The way that the initial

image is cached is - without the CORS headers.

So next time when we want to fetch the image,

with CORS headers - Chromium attempts to

serve the image from the cache.

The issue is that the image didn't have the

CORS headers when we first fetched it (which

could happen when you browse through the

website and see the image rendered in an

 tag).

And since the image didn't have the CORS

headers initially, and has them now - Chromium

returns a CORS error.

It's a well known issue in Chromium and has

been described in the chromium bug tracking

software:

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 6/9

https://bugs.chromium.org/p/chromium/issues/detail?

id=409090

The developer team working on Chromium

however flagged the issue as

WontFix(Closed) Because this is likely the

intended behavior of the Chromium engine.

Solution

In order to solve this issue, we can simply add

a dummy GET parameter in the url when

fetching the required image. This will force the

browser to not use the cached image from

before, but to send a new GET request for the

image because the URL is now different from

the one that Chromium has cached.

const corsImageModified = new Image();

corsImageModified.crossOrigin = "Anonymous";

corsImageModified.src = url + "?not-from-cache-

please";

Example:

Note that here the image loaded correctly, and we just
added one dummy GET parameter

https://bugs.chromium.org/p/chromium/issues/detail?id=409090

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 7/9

The GET parameter you add doesn't matter, as

long as the resulting URL is different than the

initial (cached) image URL.

By just adding a dummy GET parameter, you

will get the same image that you need, but this

time Chromium will send a new request for it,

containing the CORS headers in it.

Another upside of this solution is that it doesn't

bother all of the other browsers as well. So it

will fix the error that your users are getting in

Chrome, Edge and Chromium, without affecting

the experience that all of your other users are

having.

When is this useful?

"But, hey, when will I need to fetch the same

image with different headers?" you ask.

That's a good question. And an example use

case would be - when rendering that image in a

canvas that you need to scrape later.

You see, when you render an image in a canvas,

it becomes tainted. This is a security feature

that stops you from reading what's in the

canvas after you've added that image.

In order to render an image, and use the

information from the canvas later - the image

should be loaded with the Access-Control-

Allow-Origin header.

This is all well and good, but if that image was

shown in an tag before the user got to

https://developer.mozilla.org/en-US/docs/Web/HTML/CORS_enabled_image#security_and_tainted_canvases
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 8/9

see it in the canvas - then Chrome cached it,

and you hit the exact same issue that this

article solves.

Note about caching

If we want to cache the image with the CORS

header, we can always use the same dummy

GET parameter when we call the image url.

Chromium will cache it with that "different" url

that we created, and will use it when we call it

next time without raising the error.

Example:

Note here, that the browser takes both the image
without CORS and with CORS from the cache, because
they were cached before.

TL;DR

Problem:

If you've loaded an image in Chrome, Edge,

Chromium or other Chromium-based browser,

and the browser cached that image. When you

call for that same image with the Access-

Controll-Allow-Origin header (or

crossOrigin="Anonymous" if you're doing

it in JavaScript) - Chromium returns an error

response because the initially cached image

didn't have that header.

5/12/23, 11:10 AM Deal with CORS error in Chromium

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 9/9

Solution:

When calling the image url with the

crossOrigin="Anonymous" header, add a

dummy GET parameter at the end of the URL.

This will essentially change the resource, so

Chrome won't look into the cache and will call

the "new" url instead, giving you the image that

you needed, but this time with the header that

you wanted.

This solution not only fixes the issue in

Chromium based browsers, but also doesn't

change the way Firefox, Safari and other

browsers view your app.

✌️

