5/12/23, 11:10 AM

Deal with CORS error in Chromium

Deal with CORS error in
Chromium

Dealing with the CORS error when
loading images in Chromium, Chrome
or Edge.

By Kamen Kotsev

5 min. read View original

Have you ever had to load images in JavaScript
using the CORS Header
crossOrigin="Anonymous"?

In a recent project of ours, we've encountered
an issue when fetching images with CORS
headers in JavaScript. The error messages
stated:
Access to image at '${url} from origin '${origin}' has
been blocked by CORS policy: No 'Access-Control-

Allow-Origin' header is present on the requested
resource.

Reproducing the error
TL;DR:
If you open a Google

Chrome/Chromium/Microsoft Edge browser.
Start the console in a random website (for

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 1/9

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

5/12/23, 11:10 AM Deal with CORS error in Chromium
example this one) and run this code in it - you
should be able to see the error in the network
tab.

const url = "https://chrome-cors-testing.s3.eu-
central-1.amazonaws.com/hacksoft.svg";
const image = new Image();

image.src = url;

const corsImage = new Image();
corsImage.crossOrigin = "Anonymous";
corsImage.src = url;

You can see in the network tab, that the first
image, called without setting crossOrigin,
loaded correctly, and the second image, called

with crossOrigin="Anonymous" has an error.

|| hacksoft.svg 200 swg+xml VMT4T:3 20kB 131ms
[hacksoft.svg CORS error VMTATT 0B 135ms
T2requests | 604kB transferred | 1.7MB resources | Finish:20.09s | DOMContentLoaded: 96ms = Load: 1.22s

i Console WhatsNew I

>

Long version:

The steps to reproduce the issue are the
following:

e Open a browser running on the Chromium
core. The most widely used of those are
Chromium, Google Chrome and Microsoft
Edge. I'm going to use Google Chrome to
demonstrate it.

¢ Open a random website. For example - this
one.

¢ Open the console in your browser devtools.

e Chose an image url from a different host that
has CORS specifications. It's important to be
from a different host, and to not return the

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 2/9

https://hacksoft.io/
https://hacksoft.io/

5/12/23, 11:10 AM

Deal with CORS error in Chromium

Access-Control-Allow-0Origin: *
header, so we can trigger the CORS check.
This happens for almost all of the s3-hosted
images. The example that I have is this url:
https://chrome-cors-testing.s3.eu-central-
l.amazonaws.com/hacksoft.svg

e Load the image using JavaScript:

const url = "https://chrome-cors-testing.s3.eu-
central-1.amazonaws.com/hacksoft.svg";
const image = new Image();

image.src = url;

e Load the image again, but this time add a
Access-Control-Allow-0rigin: *
header. Do this by adding the image
property .cross0Origin = "Anonymous"

const corsImage = new Image();
corsImage.crossOrigin = "Anonymous";
corsImage.src = url;

The result should look something like this:

|| hacksoft.svg 200 sug+xml VM74T:3 20kB 131ms
[hacksoft.svg CORS error VMT4T:T 0B 135ms
72 requests | 604kB transferred | 1.7 MB resources | Finish:20.09s | DOMContentloaded: 36 ms | Load:122s

! Console What's New Issues X

[hacksoft.swg' from origin 'hittps://wew.hacksoft.io' has been blog:l
1 the requested resource
© »GET https://c -testing 53 eu-central-1 scksaft.sug net::ERR FATLED hacksoft.svg:1

Note that the second time we try to load the
image - Chrome returns a CORS error instead

of a response object.

The reason

So why does Google Chrome throw an error
when the url is accessed with a CORS header?
Well, first, you should know why do websites use
the CORS policy. There is a very good article

explaining this.

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 3/9

https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

5/12/23, 11:10 AM Deal with CORS error in Chromium
Let's explore how does the browser fetch
images and resources.

It sends a GET request for the image with
certain headers. It then downloads the image
and then caches it for further use.

Before loading any image, it checks the cache
first, to see if it already downloaded it at some
point. If it finds the image there - the browser
doesn't send a GET request for the image, but
rather just takes it from the cache and serves it
back to you. This saves load time and network

data when you often visit the same website.

The issue that we have here, is related to
Chromium's way of caching images, and it
doesn't appear to happen in browsers based on
different engines:

Chrome:
H hacksoft.svg 200 svg+xml VMT74T:3 20kB 131ms
‘_‘ hacksoft. svg CORS error VMT4T:T 0B 135ms -

72requests | 604 kB transferred | 1.7 MB resources | Finish:20.09s | DOMContentloaded: 36 ms | Load: 1225

i Console What'sNew lssues X

Firefox:
.
260 GET @ chrome-corst... hacksoft.svg 13 (img) svg 198K8 1.62K8 I 193 ms
260 GET @ chrome-corst... hacksoft.svg /7 (img) svg 217K8 162K8 | 203
(D 62requests 1.44MB/660.25KBtransferred Finish:5.025 DOMContentloaded: 943 ms | load: 1.195
W v Errors Wamings Logs Info Debug €55 XHR Requests 3f

% b const url = "https://chrome-cors-testing.s3.eu-central-1.amazonaws. com/hacksoft.svg";
w Image():

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 4/9

5/12/23,11:10 AM Deal with CORS error in Chromium

@ hacksoft.svg & chrome-cor.. svg 198 KB 158ms il
@ hacksoft.svg & chrome-cor.. svg 217KB 168ms il

@1 74 N1e7me (Pssoeks 21 @ 2.10s
= Preserve Log Emulate User Gesture All m m Warnings Logs CJ 'Ef 2

» const url = "https://chrome—cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg";
const image = new Image();
image.src = url;

const corsImage = new Image();
corsImage.crossOrigin = “Anonymous";
corsImage.src = url;

“https://chrome-cors—testing.s3.eu-central-1.amazonaws.com/hacksoft.svg"

Edge:

[-] hacksoft.svg 200 sugexml UMS1:3 20kB 21ms]

[} hacksoft.svg CORS error VYM51:7 0B 364 ms

52 requests 70.5 kB transferred 1.4 ME resources Finish: 8.20 s DOMContentLoaded: 1.07 s Load: 148 ¢

- Console %
M Q@ top ¥ @ Filter Default lavels ¥ 2 hidden &&
B Some messages have been moved to the Issues panel. View issues
> const = "https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg™;

onst = new Image();
age 1

const corsImage = new Image();
corsImage.crossOrigin = "Anonymous";
corsImage.src = url;
"https://chrome-cors-testing.s3.eu-central-1.amazonaws . com/hacksoft. sve”

@ Access to image at 'https://chrome-cors-testing.s3.eu-central-1.amazonaws.c 73035078-3394-4221-h72c-58c166d94Fh8:1
om/hacksoft.svg' from origin 'https://www.hacksoft.io' has been blocked by CORS policy: No "Access-Control-Allow-
Origin® header is present on the reguested resource.

© »GET https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg net::ERR_FAILED hacksoft.svg:1

Note that Microsoft Edge also has this issue, because
it's based on the Chromium engine.

The issue comes from the way that Chromium
caches the images. The way that the initial
image is cached is - without the CORS headers.
So next time when we want to fetch the image,
with CORS headers - Chromium attempts to
serve the image from the cache.

The issue is that the image didn't have the
CORS headers when we first fetched it (which
could happen when you browse through the
website and see the image rendered in an
 tag).

And since the image didn't have the CORS
headers initially, and has them now - Chromium
returns a CORS error.

It's a well known issue in Chromium and has
been described in the chromium bug tracking

software:

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 5/9

5/12/23, 11:10 AM Deal with CORS error in Chromium
https://bugs.chromium.org/p/chromium/issues/detail?
id=409090

The developer team working on Chromium
however flagged the issue as
WontFix (Closed) Because this is likely the

intended behavior of the Chromium engine.

Solution

In order to solve this issue, we can simply add
a dummy GET parameter in the url when
fetching the required image. This will force the
browser to not use the cached image from
before, but to send a new GET request for the
image because the URL is now different from

the one that Chromium has cached.

const corsImageModified = new Image();
corsImageModified.crossOrigin = "Anonymous";
corsImageModified.src = url + "?not-from-cache-
please";

Example:

= hacksoft.svg CORS error VMa444:7 0B 4...
|| hacksoft.svg 200 svg+xml VMd444:3 (disk ... 1... I
| hacksoft.svg?not-from-cache-please 200 svg+xml VM513:3 22kB 1. |

15/ 86 requests | 3.4 kB /503 kB transferred 112 kB /2.3 MBresources = Finish:41.39s = DOMContentLoaded: 1.11s | Load: 1.53s

i Console What's New X

I ® top v | @ | Filter Default levels ¥ hidden £§

> const url = "https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg";
const image = new Image();
image.src = url;

const corsImage = new Image();
corsImage.crossOrigin = "Anonymous”;
corsImage.src = url;

"https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg"

© Access to image at 'https://chrome-cors-testing.s3.eu-central-1.amazonaw 73835078-3394-4221-b72c-58c166d94fh8:1
s.com/hacksoft.svg' from origin 'https://www.hacksoft.io' has been blocked by CORS policy: No 'Access-Control-
Allow-0Origin' header is present on the requested resource.

© »GET https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg net::ERR_FAILED hacksoft.svg:1
> const corsImageModified = new Image();
corsImageModified. crossOrigin = "Anonymous®;
corsImageModified.src = url + "?not-from-cache-please";
"https://chrome-cors-testing.s3.eu-central-1.amazonaws.com/hacksoft.svg?not-from-cache-please"
>

Note that here the image loaded correctly, and we just
added one dummy GET parameter

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 6/9

https://bugs.chromium.org/p/chromium/issues/detail?id=409090

5/12/23, 11:10 AM Deal with CORS error in Chromium
The GET parameter you add doesn't matter, as
long as the resulting URL is different than the
initial (cached) image URL.
By just adding a dummy GET parameter, you
will get the same image that you need, but this
time Chromium will send a new request for it,

containing the CORS headers in it.

Another upside of this solution is that it doesn't
bother all of the other browsers as well. So it
will fix the error that your users are getting in
Chrome, Edge and Chromium, without affecting
the experience that all of your other users are

having.
When is this useful?

"But, hey, when will I need to fetch the same
image with different headers?" you ask.

That's a good question. And an example use
case would be - when rendering that image in a

canvas that you need to scrape later.

You see, when you render an image in a canvas,

it becomes tainted. This is a security feature

that stops you from reading what's in the
canvas after you've added that image.

In order to render an image, and use the
information from the canvas later - the image

should be loaded with the Access-Control-

Allow-0rigin header.

This is all well and good, but if that image was

shown in an tag before the user got to

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 7/9

https://developer.mozilla.org/en-US/docs/Web/HTML/CORS_enabled_image#security_and_tainted_canvases
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Origin

5/12/23, 11:10 AM

Deal with CORS error in Chromium

see it in the canvas - then Chrome cached it,
and you hit the exact same issue that this

article solves.

Note about caching

If we want to cache the image with the CORS
header, we can always use the same dummy

GET parameter when we call the image url.
Chromium will cache it with that "different" url
that we created, and will use it when we call it

next time without raising the error.

Example:

hacksoftsvg

[hacksoft.svg7not-from-cache-plesse

Note here, that the browser takes both the image
without CORS and with CORS from the cache, because
they were cached before.

TLDR

Problem:

If you've loaded an image in Chrome, Edge,
Chromium or other Chromium-based browser,
and the browser cached that image. When you
call for that same image with the Access-
Controll-Allow-0rigin header (or
crossOrigin="Anonymous" if you're doing
it in JavaScript) - Chromium returns an error
response because the initially cached image
didn't have that header.

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome 8/9

5/12/23, 11:10 AM

Deal with CORS error in Chromium

Solution:

When calling the image url with the
crossOrigin="Anonymous" header, add a
dummy GET parameter at the end of the URL.
This will essentially change the resource, so
Chrome won't look into the cache and will call
the "new" url instead, giving you the image that
you needed, but this time with the header that

you wanted.

This solution not only fixes the issue in
Chromium based browsers, but also doesn't
change the way Firefox, Safari and other

browsers view your app.

https://www.hacksoft.io/blog/handle-images-cors-error-in-chrome

9/9

